Abstract
While the growing realization of the importance of long-range interactions is being demonstrated in cold and ultracold bimolecular collision experiments, their influence on one of the most critical ion-neutral reactions has been overlooked. Here, we address the non-Langevin abrupt decrease observed earlier in the low-energy integral cross-sections and rate coefficients of the astrochemically important H + HeH+→ H2+ + He reaction. We attribute this to the presence of artificial barriers on existing potential energy surfaces (PESs). By incorporating precise long-range interaction terms, we introduce a new refined barrierless PES for the electronic ground state of HeH2+ reactive system, aligning closely with high-level abinitio electronic energies. Our findings, supported by various classical, quantum, and statistical methods, underscore the significance of long-range terms in accurately modeling reactive PESs. The low-temperature rate coefficient on this new PES shows a substantial enhancement as compared to the previous results and aligns with the Langevin behavior. This enhancement could noticeably affect the prediction of HeH+ abundance in early Universe condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.