Abstract

The triboelectric nanogenerator (TENG) has been proved as a simple, reliable, cost-effective, and efficient means to harvest ambient mechanical energy in a normal environment, although its performance evaluation under the room temperature is still lacking. Here, we systematically looked into the reliance of triboelectric nanogenerators output on the ambient temperature spanning from 77 K to 320 K. Employed the most commonly used Polytetrafluoroethylene (PTFE) and aluminum as two contact materials, both the output voltage and current show a tendency of increase with decreasing temperature. Applicability of triboelectric nanogenerator over a wide range of temperature was confirmed from 77 K to 320 K. And, an output enhancement of 79.3% was experimentally obtained at the temperature of 77 K compared to that at a temperature of 300 K. However, a reverse tendency was observed for the TiO2 nanotubes/PTFE and Al coated TiO2 nanotubes/PTFE based triboelectric nanogenerators. This work can contribute not only to the design and packaging of triboelectric devices to operate at extreme environmental temperatures but also to the fundamental understanding of the mechanism of triboelectric effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.