Abstract
The diffusion absorption refrigeration cycle can enable passive fully thermally activated refrigeration for off-grid applications. In the accompanying paper, a new system configuration was proposed that employs alternate working fluids (NH3–NaSCN–He), a coupling-fluid heated bubble-pump generator, and an enhanced absorber. Detailed component and system level models were formulated for this design. In Part II of this work, the subject of this paper, these results are applied to implement a complete low-source-temperature (110–130 °C) passively cooled diffusion absorption refrigeration (DAR) system. Cooling was achieved at temperature ranges suitable for refrigeration (Tevap = 6 → 3 °C, COP ~ 0.06) and air-conditioning (12 → 8 °C, COP ~ 0.14). Device performance was also assessed at elevated ambient temperatures, reduced ambient air velocities, and varying system pressures. Results from this investigation agreed well with the predictions of the models developed in Part I.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.