Abstract
Much attention has been directed toward developing dental direct restorative composites that generate less shrinkage stress during setting. The aim of this study was to explore the viscoelastic behavior of a new class of low-shrinkage dental restorative composite during setting. The setting behavior of an experimental oxirane composite has been investigated by analyzing stress-strain data with two-parametric mechanical models. Experimental data were obtained from a dynamic test method, in which the setting light-activated composite was continuously subjected to sinusoidal strain cycles. The material parameters and the model's predictive capacity were analyzed with validated modeling procedures. The light-activated oxirane composite exhibited shrinkage delay and low polymerization shrinkage strain and stresses when compared with conventional light-activated composite. Noise in the stress data restricted the predictive ability of the Maxwell model to the elastic modulus development of the composite only. Evaluation tests of their potential as restorative material are required, to examine if the biocompatibility and mechanical properties after setting of oxirane composites are acceptable for dental use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Biomedical Materials Research Part B: Applied Biomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.