Abstract
A novel method is proposed in this paper to improve the recognition accuracy of Local Binary Pattern (LBP) on low-resolution face recognition. More precise descriptors and effectively face features can be extracted by combining multi-scale blocking center symmetric local binary pattern (CS-LBP) based on Gaussian pyramids and weighted principal component analysis (PCA) on low-resolution condition. Firstly, the features statistical histograms of face images are calculated by multi-scale blocking CS-LBP operator. Secondly, the stronger classification and lower dimension features can be got by applying weighted PCA algorithm. Finally, the different classifiers are used to select the optimal classification categories of low-resolution face set and calculate the recognition rate. The results in the ORL human face databases show that recognition rate can get 89.38% when the resolution of face image drops to 12[Formula: see text]10 pixel and basically satisfy the practical requirements of recognition. The further comparison of other descriptors and experiments from videos proved that the novel algorithm can improve recognition accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Pattern Recognition and Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.