Abstract
The Cauchy problem for the Maxwell-Klein-Gordon equations in Lorenz gauge in two and three space dimensions is locally well-posed for low regularity data without finite energy. The result relies on the null structure for the main bilinear terms, which was shown to be not only present in Coulomb gauge but also in Lorenz gauge by Selberg and Tesfahun, who proved global well-posedness for finite energy data in three space dimensions. This null structure is combined with product estimates for wave-Sobolev spaces given systematically by d'Ancona, Foschi and Selberg.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.