Abstract

Despite the popularity of low-rank matrix completion, the majority of its theory has been developed under the assumption of random observation patterns, whereas very little is known about the practically relevant case of non-random patterns. Specifically, a fundamental yet largely open question is to describe patterns that allow for unique or finitely many completions. This paper provides three such families of patterns for any rank and any matrix size. A key to achieving this is a novel formulation of low-rank matrix completion in terms of Plüucker coordinates, the latter a traditional tool in computer vision. This connection is of potential significance to a wide family of matrix and subspace learning problems with incomplete data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.