Abstract
We show how reducing pressure can improve the design of a 1.0-1a mixture homogeneous extractive distillation process and we use extractive efficiency indicators to compare the optimality of different designs. The case study concerns the separation of the diisopropyl ether (DIPE)–isopropyl alcohol (IPA) minimum boiling azeotrope with heavy entrainer 2-methoxyethanol. We first explain that the unexpected energy cost OF decrease following an increase of the distillate outputs is due to the interrelation of the two distillate flow rates and purities and the entrainer recycling through mass balance when considering both the extractive distillation column and the entrainer regeneration column. Then, we find that for the studied case a lower pressure reduces the usage of entrainer and increases the relative volatility of DIPE–IPA for the same entrainer content in the extractive column. A 0.4atm operating pressure is selected to enable the use of cheap cooling water in the condenser. We run an optimization of the entrainer flow rate, both columns reflux ratios, distillates and feed locations by minimizing the total energy consumption per product unit. Double digit savings in energy consumption are achieved while TAC is reduced significantly. An extractive efficiency indicator that describes the ability of the extractive section to discriminate the desired product between the top and the bottom of the extractive section of the extractive section is calculated for comparing and explaining the benefit of lowering pressure on the basis of thermodynamic insight.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.