Abstract

Bottom gate, top contact Organic Field Effect Transistors (OFETs) were fabricated using copper phthalocyanine (CuPc) as an active layer. The electrical properties of OFETs fabricated with CuPc annealed at different annealing temperatures and different channel length to width (L/W) ratios were studied. The transfer characteristics of the devices appear to improve with annealing temperature of CuPc and increasing L/W ratios of the devices. Upon annealing, the field effect mobility increased from 0.03 ± 0.004 cm2/V to 1.3 ± 0.02 cm2/V. Similarly, the interface state density reduced from 5.14 ± 0.39 × 1011 cm−2eV−1 for the device fabricated using as deposited CuPc, to 2.41 ± 0.05 × 1011 cm−2eV−1 for the device with CuPc annealed at 80 °C. The on/off current ratio increased from 102 for the as-deposited device, to 105 for the device with CuPc annealed at 80 °C. The dependence of the subthreshold swing on the L/W ratio was also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.