Abstract

Forming cartilage tissue in vitro that resembles native tissue is one of the challenges of cartilage tissue engineering. The aim of this study was to determine whether low-power laser stimulation would improve the formation of cartilage tissue in vitro. Bovine articular chondrocytes were seeded on the top surface of porous calcium polyphosphate substrates. After 2 days, laser stimulation was applied daily at a wavelength of 650 nm using a laser diode with energy densities of either 1.75 or 3 J/cm(2) for 4 weeks. Proteoglycan and collagen synthesis and matrix content were determined. Cartilage tissue morphology was evaluated histologically. Histologically, there was no difference in the appearance or cellularity of the tissues that formed in the presence or absence of laser stimulation at either dosage. There were no differences in DNA content between treated and untreated constructs and live-dead assay confirmed that this treatment was not toxic to the cells. Laser stimulation at 3 J/cm(2) enhanced matrix synthesis resulting in significantly more tissue formation than laser stimulation at 1.75 J/cm(2) or untreated cultures. Short exposures to low-power laser stimulation using a laser diode with 3 J/cm(2) dose improves cartilage tissue formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.