Abstract

Power consumption is very critical for portable video applications. During compression, the motion estimation unit consumes the largest portion of power since it performs a huge amount of computation. Different low power architectures for implementing the full-search block-matching (FSBM) motion estimation are discussed. Also, architectural enhancements to further reduce the power consumed during FSBM motion estimation without sacrificing throughput or optimality are presented. The proposed approach achieves these power savings by disabling portions of the architecture that perform unnecessary computations. A comparison between the different architectures including our enhancements and others is presented using simulation and analytical analysis. Different benchmarks are used to test and compare the discussed architectures. Analytical and simulation results show the effectiveness of the enhancements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.