Abstract

The technologies of 3D vertical architecture have made a major breakthrough in establishing high‐density memory structures. Combined with an array structure, a 3D high‐density vertical resistive random access memory (VRRAM) cross‐point array is demonstrated to efficiently increase the device density. Though electrochemical migration (ECM) resistive random access (RRAM) has the advantage of low power consumption, the stability of the operating voltage requires further improvements due to filament expansions and deterioration. In this work, 3D‐VRRAM arrays are designed. Two‐layered RRAM cells, with one inert and one active sidewall electrode stacked at a cross‐point, are constructed, where the thin film sidewall electrode in the VRRAM structure is beneficial for confining the expansions of the conducting filaments. Thus, the top cell (Pt/ZnO/Pt) and the bottom cell (Ag/ZnO/Pt) in the VRRAM structure, which are switched by different mechanisms, can be analyzed at the same time. The oxygen vacancy filaments in the Pt/ZnO/Pt cell and Ag filaments in the Ag/ZnO/Pt cell are verified. The 40 nm thickness sidewall electrode restricts the filament size to nanoscale, which demonstrates the stability of the operating voltages. Additionally, the 0.3 V operating voltage of Ag/ZnO/Pt ECM VRRAM demonstrates the potential of low power consumption of VRRAM arrays in future applications.

Highlights

  • NAND flash is the most widely used nonarray structure, a 3D high-density vertical resistive random access memory (VRRAM) cross-point array is demonstrated to efficiently increase the device density

  • RRAM cells, with one inert and one active sidewall electrode stacked at a cross-point, are constructed, where the thin film sidewall electrode in the VRRAM structure is beneficial for confining the expansions of the conducting filaments

  • RRAM is considered as a promising candidate due to its fast switching speed and low power consumption.[11,12,13,14,15]

Read more

Summary

Introduction

NAND flash is the most widely used nonarray structure, a 3D high-density vertical resistive random access memory (VRRAM) cross-point array is demonstrated to efficiently increase the device density.

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.