Abstract

In this paper, a short distance wireless sensor node "AccuMicroMotion" for physiological activity monitoring is proposed for detecting motions in six degrees of freedom. System architecture, relevant microstructures, and electronic circuits to implement the sensor node are presented. A three-axis microelectromechanical systems (MEMS) accelerometer and a z-axis gyroscope are designed and fabricated using a new deep-reactive ion-etch CMOS-MEMS process. The interface circuits, an analog-to-digital converter, and a wireless transmitter are designed using Taiwan Semiconductor Manufacturing Company 0.35-/spl mu/m CMOS process, wherein the interface circuits adopt chopper stabilization technique and can resolve a signal (dc to 1 kHz) as low as 200 nV from the microsensors; digitized outputs from the microsensors are transmitted by a 900-MHz amplitude-shift-keying radio-frequency transmitter that delivers a 2.2-mW power to a 50-/spl Omega/ antenna. The system draws an average current of 4.8 mA from a 3-V supply when six sensors are in operation simultaneously and provides an overall 60-dB dynamic range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.