Abstract

We present a low-power all-digital radio-over-fiber (RoF) transmitter for the 28 GHz band using sigma-delta modulation. Using a parallel electro-absorption modulator (EAM) structure, the radio signal upconversion is split between the electrical and the optical domains. This halves the maximum bandwidth requirement of the driver circuit with respect to conventional implementations. Furthermore, the effect of chromatic dispersion can be mitigated by tuning the optical phase and amplitude applied to the individual modulators, such that transmission notches are partially removed. The modulator structure is described using simplified models and verified in VPI TransmissionMaker. Experimental results using a 140 mW non-return-to-zero (NRZ) driver and parallel EAMs are provided and yield an error vector magnitude (EVM) of 7.6% (5.2%) when transporting a radio signal modulated at 28 GHz with 5.25 Gb/s (2.625 Gb/s) 64-QAM over 10 km standard single mode fiber (SSMF) at 1560 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.