Abstract

The current study focuses on the development of a three-dimensional flow and aeroacoustic solver developed in a finite-volume framework which uses similar, dense meshes for both flow and acoustics while using low-order schemes from the finite volume framework to minimize the points per wavelength, overcomes interpolation errors between flow and acoustic meshes, since one-to-one mesh mapping will be applied, minimize the computational time for the acoustic loop with respect to the fluid flow loop and provides a practical, easy to use integrated numerical tool. As dispersion errors are common within this computational framework, Riemann fluxes are used to solve the linearized Euler equations with unsteady quadrupole and dipole sources. A coupling scheme is presented and common issues with boundary conditions, mesh topology and sub-cycling are discussed. Various verification and validation test cases show the expected behavior and trends with respect to analytic and reference results. An application case is presented, where airfoil self-noise is determined around a beveled flat plate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.