Abstract

We analyze the voltage losses at open circuit in solution-processed, small-molecule:fullerene blend solar cells, using electroluminescence and external quantum efficiency measurements and the reciprocity relationship between light absorption and emission. For solar cells made from oligo-thienylenevinylene-based donors and phenyl-C71 butyric acid methyl ester (PC71BM), we find that the voltage loss due to the finite breadth of the absorption edge is remarkably small, less than 0.01 eV in the best cases, while the voltage loss due to nonradiative recombination reaches 0.29 eV, one of the smallest values reported for an organic solar cell. As a result, the open-circuit voltage reaches around 1.0 V for an optical gap of 1.6 eV, greatly exceeding the voltage of a high-performance polymer-based system with similar optical gap. We assign the remarkably small absorption broadening loss to a low degree of energetic disorder in the small-molecule system that allows efficient charge separation at a lower driving for...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.