Abstract
This article presents GaN two-dimensional electron gas (2DEG) Hall plates with low residual offset and noise at 3 V input bias. We studied devices made from three consecutive fabrication generations through current spinning offset measurements in a zero-field chamber. When operated above 1 V, the first-generation devices charted high residual offsets >1 mT. We reduced these residual offsets by three orders of magnitude in later device generations. Two experiments were performed to confirm the improvements. First, the GaN 2DEG Hall-effect plates were measured with infrared microscopy during current spinning to investigate current crowding and Joule heating. The low offset devices had minimal thermal gradients while the high offset devices had large thermal variations during current spinning. Second, zero-field current spinning was used to compare GaN 2DEG Hall-effect plates against typical commercial silicon Hall-effect plates. The Si devices had residual offsets $> 10\mu \text{T}$ biased at 3 V and AlGaN/GaN devices had residual offset $ at 3 V, and an InAlN/GaN devices operated at 2 V had a residual offset $ . Thus, for the first time, GaN 2DEG Hall-effect plates were shown to operate with high bias with low offsets and noise, which enables high fidelity sensing applications in extreme environments. [2020–0176]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.