Abstract
A low-noise and -power readout integrated circuit (IC) for two-electrode electrocardiogram (ECG) recording is developed in this study using a common-mode charge pump (CMCP) for a robust 20-VPP common-mode interference (CMI). Two-electrode ECG recording offers more comfort than three-electrode ECG recording. Contrasting to the three-electrode ECG recording, the two-electrode ECG recording is affected by CMI during measurements; the intervention of a large CMI will distort the ECG signal measurement. To achieve robustness for the CMI, the proposed ECG readout IC adopts CMCP—it uses switched capacitors that store and subtract CMI by control logic. In this paper, a window comparator structure is applied to CMCP to obtain a signal with less distortion. The window voltage ranges were set between the input common-mode ranges in which IA can operate. Therefore, a signal with less distortion was obtained by stopping the operation of CMCP between the window voltage ranges. It also reduced additional current consumption. To achieve this, the proposed circuit is implemented using a chopper stabilization technique. The chopper implemented in the amplifier can reduce low-frequency noise components, such as 1/f noise, and it comprises a CMCP, current feedback instrumentation amplifier, QRS peak detector, relaxation oscillator, voltage reference, timing generator, and serial peripheral interface on a single chip. The proposed circuit was designed using a standard 0.18 μm CMOS process with an active area of 0.54 mm2. The proposed CMCP achieves a CMI robustness of 20 VPP at 60 Hz. The measured input-referred noise level was 119 nV/√Hz at 1 Hz, and the power consumption was 23.83 μW with a 1.8 V power supply.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.