Abstract

Low-temperature heat capacity measurements were performed on the molecular nanomagnet (V15). The low-lying magnetic excitations are clearly evidenced by the Schottky anomalies in the specific-heat data. The energy levels determined from the low-temperature observables agree well with the three-spin model for V15. The magnetocaloric effect of V15 is examined. The maximum entropy change of is found for a field change of at . In spite of the low ground-state spin of V15, a drastic entropy change of is observed for a field change of at 0.4 K, which is comparable to the entropy change of some high-spin sub-kelvin magnetic coolers at such low temperatures. Anisotropy and consequent zero-field splitting result in this characteristic of V15 and may open new possibilities in the design of ultra-low-temperature molecular coolers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.