Abstract

We report low-loss channel waveguides in a single-crystal LiNbO(3) thin film achieved using the annealed proton exchange process. The simulation indicated that the mode size of the α phase channel waveguide could be as small as 1.2 μm(2). Waveguides with several different widths were fabricated, and the 4 μm-wide channel waveguide exhibited a mode size of 4.6 μm(2). Its propagation loss was accurately evaluated to be as low as 0.6 dB/cm at 1.55 μm. The single-crystal lattice structure in the LiNbO(3) thin film was preserved by a moderate annealed proton exchange process (5 min of proton exchange at 200°C, followed by 3 h annealing at 350°C), as revealed by measuring the extraordinary refractive index change and x ray rocking curve. A longer proton exchange time followed by stronger annealing would destroy the crystal structure and induce a high loss in the channel waveguides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.