Abstract

With fiber optical telecommunication systems penetrating into metropolitan and access networks, planar waveguide technology is increasingly being considered a solution to the bottleneck of cost-effective manufacture of passive components. Being recognized for their high thermo-optical coefficients, ease of fabrication, cost-effectiveness, and compatibility with other materials, polymers as a platform technology for waveguide devices are gaining more and more commercial acceptance. Fully exploiting the potentials of the polymeric materials demands comprehensive understanding of both the specific device applications and various polymer systems. The right choice of materials is often the key to the success of component development. Unfortunately, since extensive study of polymeric materials and devices operating at 1.55 μm began just recently, few ideal materials have so far been made commercially available. From the polymer chemistry point of view, it is possible to tailor the materials to meet specific and strict requirements for optical waveguide devices. This is a review of the most promising fluorinated polymers and silicone resins and their demonstrated device applications. The paper is designed to provide a guide to both polymer scientists who want to develop novel high-performance materials for waveguide applications, and optical engineers who need to gain insight into the materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.