Abstract

At present, researchers have made great progress in the research of object detection, however, these studies mainly focus on the object detection of images under normal lighting, ignoring the target detection under low light. And images in the fields of automatic driving at night and surveillance are usually obtained in low-light environments. These images have problems such as poor brightness, low contrast, and obvious noise, which lead to a large amount of information loss in the image. And the performance of object detection in low light is reduced. In this paper, we propose a low-light image enhancement method based on multi-scale network fusion to solve the problems of images in low-light environments. Aiming at the problem that the effective information of low-light images is relatively small, we propose a preprocessing method for image nonlinear transformation and fusion, which improves the amount of available information in the light image. Then, in order to obtain a better enhancement effect, a multi-scale feature fusion method is proposed, which fuses features from different resolution levels in the network. The details of low-light areas in the image are improved, and the problem of feature loss caused by too deep network layers is solved. The experimental results show that our proposed method can achieve better enhancement effects on different datasets compared with the current mainstream methods. The average recall value of the object detection with our method is improved by 38.25%, which shows that our proposed method is effective and can promote the development of autonomous driving, monitoring, and other fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.