Abstract

Abstract. Low-level jets (LLJ) are important for turbulence in the stably stratified atmospheric boundary layer, but their occurrence, properties, and generation mechanisms in the Arctic are not well known. We analysed LLJs over the central Arctic Ocean in spring and summer 2007 on the basis of data collected in the drifting ice station Tara. Instead of traditional radiosonde soundings, data from tethersonde soundings with a high vertical resolution were used. The Tara results showed a lower occurrence of LLJs (46 ± 8%) than many previous studies over polar sea ice. Strong jet core winds contributed to growth of the turbulent layer. Complex relationships between the jet core height and the temperature inversion top height were detected: substantial correlation (r = 0.72; p < 0.01) occurred when the jet core was above the turbulent layer, but when inside the turbulent layer there was no correlation. The most important forcing mechanism for LLJs was baroclinicity, which was responsible for the generation of strong and warm LLJs, which on average occurred at lower altitudes than other jets. Baroclinic jets were mostly associated with transient cyclones instead of the climatological air temperature gradients. Besides baroclinicity, cases related to inertial oscillations and gusts were detected. As many as 49% of the LLJs observed were associated with a frontal passage, which provides favourable conditions for baroclinicity, inertial oscillations, and gusts. Further research needs on LLJs in the Arctic include investigation of low-level jet streams and their effects on the sea ice drift and atmospheric moisture transport.

Highlights

  • Numerous recent studies have demonstrated major changes in the climate system of the central Arctic

  • As many as 21 level jets (LLJ) were associated with observed frontal passages

  • We note that seven of these frontal LLJs occurred within 6 h from a case classified as baroclinic

Read more

Summary

Introduction

Numerous recent studies have demonstrated major changes in the climate system of the central Arctic. Climate models have large problems in simulating the recent changes in the Arctic sea ice cover (Stroeve et al, 2007), and even atmospheric reanalyses include major errors over the Arctic sea ice (Jakobson et al, 2012). Errors in both climate models (Tjernström et al, 2005) and numerical weather prediction models (Atlaskin and Vihma, 2012) tend to be largest in conditions of a stable boundary layer (SBL).

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.