Abstract

Previous studies have demonstrated that transcranial ultrasound stimulation (TUS) not only modulates cerebral hemodynamics, neural activity, and neurovascular coupling characteristics in resting samples but also exerts a significant inhibitory effect on the neural activity in task samples. However, the effect of TUS on cerebral blood oxygenation and neurovascular coupling in task samples remains to be elucidated. To answer this question, we first used forepaw electrical stimulation of the mice to elicit the corresponding cortical excitation, and then stimulated this cortical region using different modes of TUS, and simultaneously recorded the local field potential using electrophysiological acquisition and hemodynamics using optical intrinsic signal imaging. The results indicate that for the mice under peripheral sensory stimulation state, TUS with a duty cycle of 50% can (1) enhance the amplitude of cerebral blood oxygenation signal, (2) reduce the time-frequency characteristics of evoked potential, (3) reduce the strength of neurovascular coupling in time domain, (4) enhance the strength of neurovascular coupling in frequency domain, and (5) reduce the time-frequency cross-coupling of neurovasculature. The results of this study indicate that TUS can modulate the cerebral blood oxygenation and neurovascular coupling in peripheral sensory stimulation state mice under specific parameters. This study opens up a new area of investigation for potential applicability of TUS in brain diseases related to cerebral blood oxygenation and neurovascular coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.