Abstract
ObjectiveRheumatoid arthritis (RA) is a chronic inflammatory disease involving persistent inflammation resulting in cartilage and bone damage. RA can affect the temporomandibular joint (TMJ), and damage to the TMJ condyle can lead to craniofacial developmental disturbances, causing micrognathia, malocclusion, retrognathia, and increased overjet. Current treatments of TMJ arthritis are unsatisfactory. This pilot study aimed to investigate the effect of low intensity pulsed ultrasound (LIPUS) on the mandible and TMJ condyles in an RA mouse model using micro-computed tomography (Micro-CT), histologic, and immunohistochemical analyses. MethodsMRL-lpr/lpr mice received LIPUS application to their TMJs for 20 min/day for 2 and 4 weeks. Micro-CT analysis measured condylar length and width, posterior mandibular height (P.M.H), mandibular ramus length (M.R.L), effective mandibular length (Ef.M.L), angular process length (A.P.L), mandibular plane (M.P), mandibular axis (M.Ax), and lower incisor height (L.I.H). Condylar cartilage thickness was histologically measured, and type II collagen (Col-II), vascular endothelial growth factor (VEGF), nuclear factor kappa-B ligand (RANKL), and osteoprotegerin (OPG) expression was analyzed using immunohistochemistry. ResultsComparing the LIPUS-treated group with the control, P.M.H, M.R.L, and M.P were significantly greater in the LIPUS-treated group. Immunostaining for Col-II and VEGF was stronger in the LIPUS-treated group after 4 weeks. OPG showed slightly more expression in the LIPUS group. ConclusionsLIPUS may enhance mandibular and TMJ condylar bone formation in this RA mouse model by preventing any growth disturbances involved in inflammation. Further studies are recommended to analyze the effect of LIPUS on TMJ of RA in other animal models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.