Abstract

In this work, a low-firing thick-film materials system allowing fabrication of piezoresistive sensors on surgical alloys is presented in detail, with application to a force-sensing surgical instrument. The system comprises a series of individual thick-film dielectric, conductor, resistive and overglaze compositions based on a lead borosilicate glass matrix. The moderate achieved firing temperature, around 625∘C, greatly increases compatibility with metallic substrates, allowing the use of high-strength medical alloys with low thermal degradation. Specific fillers for the dielectric layers increase adhesion on steel substrates and allow thermal matching to austenitic and ferritic/martensitic steels, as well as titanium alloys. The functionality of this materials system is successfully demonstrated here by implementing it into a previously developed ligament-balancing force sensor for total knee arthroplasty (TKA).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.