Abstract

AbstractResults are reported on the electron field emission properties of intrinsic and S- incorporated nanocrystalline carbon (n-C:S) thin films grown on molybdenum substrates by hotfilament CVD technique from methane-hydrogen (CH4/H2) and hydrogen sulphide-hydrogen (H2S/H2) gas pre mixtures respectively. The field emission properties for the S-incorporated films were investigated as a function of substrate temperature (TS). Lowest turn-on field was observed at 4.5 V/μm for one of the sample, which was grown at 900 °C, demonstrating the effect of sulfur addition. The S-incorporation also causes microstructural and structural changes, as characterized with ex situ techniques such as SEM, AFM and Raman spectroscopy (RS). Sassisted films show smoother surfaces and finer-grained than those grown without it. The electron field emission properties of S-assisted films is also compared to the film grown without it (intrinsic) at a particular deposition temperature and the turn-on field was found to be almost half for the S-assisted film than for the non S-assisted film. The influence of growth temperature was also conducted and an inverse correlation was found with the turn-on field (Ec). These studies were performed in order attempt to “tailor-the-material” as a viable cold cathode material by introducing the defecTS and altering the electronic structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.