Abstract

This study assessed the inactivation kinetics of 150 keV low-energy X-ray on mono-/co-culture biofilms of Listeria monocytogenes and Pseudomonas fluorescens on three different food-contact-surfaces (polyethylene, acrylic, and stainless steel). The results indicated that the level of biofilm formation of mono-/co-cultures of L. monocytogenes and P. fluorescens was the highest on acrylic. The mono-culture L. monocytogenes biofilm cells exhibited higher resistance to the low-energy X-rays than the corresponding mono-culture P. fluorescens biofilm cells, regardless of surface types. Furthermore, co-culture had enhanced the resistance of both P. fluorescens and L. monocytogenes biofilm cells to the low-energy X-ray. Two kinetic models for the inactivation process were investigated, including (i) Linear model and (ii) Weibull model. Based on R2, RMSE and AIC analysis, the Weibull model was superior in fitting the inactivation curves of low-energy X-ray on L. monocytogenes in mono-/co-culture biofilms with P. fluorescens. For mono-culture biofilms, the irradiation achieved the tR1 value (derived from the Weibull model, i.e., the dose required for the first 1-log reduction) of 46.36–50.81 Gy for L. monocytogenes and the tR1 value of 25.61–31.33 Gy for P. fluorescens. For co-culture biofilms, higher tR1 values for L. monocytogenes (59.54–70.77 Gy) and P. fluorescens (32.73–45.13 Gy) were yielded than those for their individual counterparts in mono-culture biofilm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.