Abstract

We study low-energy properties of the random displacement model, a random Schrödinger operator describing an electron in a randomly deformed lattice. All periodic displacement configurations which minimize the bottom of the spectrum are characterized. While this configuration is essentially unique for dimension greater than one, there are infinitely many different minimizing configurations in the one-dimensional case. The latter leads to unusual low energy asymptotics for the integrated density of states of the one-dimensional random displacement model. For symmetric Bernoulli-distributed displacements it has a 1 / log 2 -singularity at the bottom of the spectrum. In particular, it is not Hölder-continuous.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.