Abstract

Abstract Electron elastic total cross sections (TCSs) and differential cross sections (DCSs) in both impact energy and scattering angle for the excited Au and Pt atoms are calculated in the electron impact energy range 0 ⩽ E ⩽ 4.0 eV. The cross sections are found to be characterized by very sharp long-lived resonances whose positions are identified with the binding energies of the excited anions formed during the collisions. The recent novel Regge-pole methodology wherein is embedded through the Mulholland formula the electron–electron correlations is used together with a Thomas–Fermi type potential incorporating the crucial core-polarization interaction for the calculations of the TCSs. The DCSs are evaluated using a partial wave expansion. The Ramsauer–Townsend minima, the shape resonances and the binding energies of the excited Au− and Pt− anions are extracted from the cross sections, while the critical minima are determined from the DCSs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.