Abstract
The risk of low birth weights is elevated in prenatal exposure to polycyclic aromatic hydrocarbons (PAHs), which are ubiquitous environmental pollutants generated from combustion of organic compounds, including cigarette smoke. We hypothesized that benzo(a)pyrene (BaP), a member of PAHs existing in cigarette smoke, may affect the myogenesis to cause low birth weights. We investigated the effects of BaP and its main metabolite, benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), on the myogenic differentiation of human skeletal muscle-derived progenitor cells (HSMPCs). HSMPCs were isolated by a modified preplate technique and cultured in myogenic differentiation media with or without BaP and BPDE (0.25 and 0.5 μM) for 4 days. The multinucleated myotube formation was morphologically analyzed by hematoxylin and eosin staining. The expressions of myogenic differentiation markers and related signaling proteins were determined by Western blotting. Both BaP and BPDE at the submicromolar concentrations (0.25 and 0.5 μM) dose-dependently repressed HSMPCs myogenic differentiation without obvious cell toxicity. Both BaP and BPDE inhibited the muscle-specific protein expressions (myogenin and myosin heavy chain) and phosphorylation of Akt (a known modulator in myogenesis), which could be significantly reversed by the inhibitors for aryl hydrocarbon receptor (AhR), estrogen receptor (ER), and nuclear factor (NF)-κB. BaP- and BPDE-activated NF-κB-p65 protein phosphorylation could also be attenuated by both AhR and ER inhibitors. The inhibitory effects of BaP and BPDE on myogenesis were reversed after withdrawing BaP exposure, but not after BPDE withdrawal. These results suggest that both BaP and BPDE are capable of inhibiting myogenesis via an AhR- or/and ER-regulated NF-κB/Akt signaling pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.