Abstract

We study the performance of distance-three surface code layouts under realistic multi-parameter noise models. We first calculate their thresholds under depolarizing noise. We then compare a Pauli-twirl approximation of amplitude and phase damping to amplitude and phase damping. We find the approximate channel results in a pessimistic estimate of the logical error rate, indicating the realistic threshold may be higher than previously estimated. From Monte-Carlo simulations, we identify experimental parameters for which these layouts admit reliable computation. Due to its low resource cost and superior performance, we conclude that the 17-qubit layout should be targeted in early experimental implementations of the surface code. We find that architectures with gate times in the 5-40 ns range and T1 times of at least 1-2 us range will exhibit improved logical error rates with a 17-qubit surface code encoding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.