Abstract

In this paper, a low dimensional model is constructed to approximate the nonlinear ferroelastic dynamics involving mechanically and thermally-induced martensite transformations. The dynamics of the first order martensite transformation is first modeled by a set of nonlinear coupled partial differential equations (PDEs), which is obtained by using the modified Ginzburg–Landau theory. The Chebyshev collocation method is employed for the numerical analysis of the PDE model. An extended proper orthogonal decomposition is then carried out to construct a set of empirical orthogonal eigenmodes of the dynamics, with which system characteristics can be optimally approximated (in a specified sense) within a range of different temperatures and under various mechanical and thermal loadings. The performance of the low dimensional model is analyzed numerically. Results on the dynamics involving mechanically and thermally-induced phase transformations and the hysteresis effects induced by such transformations are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.