Abstract

The unitary coupled cluster (UCC) approximation is one of the more promising wave function ansätzes for electronic structure calculations on quantum computers via the variational quantum eigensolver algorithm. However, for large systems with many orbitals, the required number of UCC factors still leads to very deep quantum circuits, which can be challenging to implement. Based on the observation that most UCC amplitudes are small for both weakly correlated and strongly correlated molecules, we devise an algorithm that employs a Taylor expansion in the small amplitudes, trading off circuit depth for extra measurements. Strong correlations can be taken into account by performing the expansion about a small set of UCC factors, which are treated exactly. Near equilibrium, the Taylor series expansion often works well without the need to include any exact factors; as the molecule is stretched and correlations increase, we find only a small number of factors need to be treated exactly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.