Abstract

(E)-4-Hydroxynon-2-enal (HNE), an electrophilic bifunctional cytotoxic lipid peroxidation product, forms covalent adducts with nucleophilic side chains of amino acid residues. HNE-derived adducts have been implicated in many pathophysiological processes including atherosclerosis, diabetes, and Alzheimer’s disease. Tritium- and deuterium-labeled HNE (d4-HNE) were used orthogonally to study adduction with proteins and individual nucleophilic groups of histidyl, lysyl, and cysteine residues. Using tritium-labeled HNE, we detected the binding of 486 molecules of HNE per low-density lipoprotein (LDL) particle, significantly more than the total number of all reactive nucleophiles in the LDL particle. This suggests the formation of adducts that incorporate multiple molecules of HNE with some nucleophilic amino acid side chains. We also found that the reaction of a 1:1 mixture of d4-HNE and d0-HNE with N-acetylhistidine, N-acetyl-Gly-Lys-OMe, or N-acetyl cysteine generates 1:1, 2:1, and 3:1 adducts, which exhibit unique mass spectral signatures that aid in structural characterization. A domino-like reaction of initial 1:1 HNE Michael adducts of histidyl or lysyl nucleophiles with multiple additional HNE molecules forms 2:1 and 3:1 adducts that were structurally characterized by tandem mass spectrometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.