Abstract
Traditional high-voltage pulse generators, like Marx generators often face challenges related to efficiency and complexity. In this paper, a solid-state multi-module high-voltage pulse generator that integrates capacitor-diode voltage multipliers (CDVM) with DC-DC boost converters and closed-loop voltage control is proposed to overcome these challenges. The system achieves high output voltage by coupling the pulsed output voltages of individual low-voltage DC sources in series across each module. The proposed design was modeled using MATLAB, and experimental testing was conducted on a single stage. Comparative analyses between timedomain parameters, proportional-integral (PI), and fractional order proportional integral derivative (FOPID) controllers were performed. Both MATLAB simulations and experimental validations demonstrate the effectiveness of this approach. The rise time, peak time, settling time, and steady-state error are all improved using an FOPID controller, decreasing from 0.32 to 0.31 seconds, 0.42 to 0.35 seconds, and 3.15 to 2.20 seconds, respectively. These findings indicate that a closed-loop FOPID controller enhances time-domain performance parameters more effectively than a PI controller for a two-stage DC-DC voltage multiplier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Power Engineering (IJAPE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.