Abstract

This study aimed to test the activity of Mn ferrite, hematin-Mn ferrite and colloidal maghemite in decomposition of Orange II (O-II) and Alizarin Red S (ARS) in model aqueous solutions. Color removal was explored at room temperature using magnetic stirring with and without a magnetic bar, taking advantage of the solids' magnetism. Decomposition of H2O2 was also studied separately and as radicals provider in dye decomposition. Catalyst/dye solution was fixed at 10mg/4mL. pH and dye concentration were variable. Absorbance was measured during 120min by UV-Vis. Reuse of catalysts was also performed. Azo dyes such as O-II are more resistant to oxidative removal using hydrogen peroxide than anthraquinone-like ARS. CITMD5 reduced ARS absorbance up to 71.9% when dye was less than 250mg/L. HEM-Mn-MAG completely decolorized a 62.5mg/L O-II solution at pH11 while CITMD5 reached half of that conversion under the same conditions. The highest color removal in O-II/ARS mixtures was obtained with HEM-Mn-MAG, 40% absorbance reduction in 2h. Mn-MAG is not active to remove O-II in presence of hydrogen peroxide in the 3-9 pH range at rt. The high activity of Mn-MAG in hydrogen peroxide decomposition may be assigned to the combination of Mn+2/Mn+3 and Fe+2/Fe+3, because the MnOx is active in the decomposition of hydrogen peroxide. Mn-MAG can be reused, preserving high activity in this reaction. Mn-based magnetic nanoparticles should be considered as inexpensive materials to treat textile wastewaters. The online version contains supplementary material available at 10.1007/s40201-021-00640-x.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.