Abstract

Next-generation integrated fiber-wireless access networks will require low-cost and high-capacity deployment to meet customer demand. A new configuration of radio over fiber–passive optical network (RoF-PON) architecture, including two 60 GHz multiple-input multiple-output (MIMO) based on a 5G universal filtered multicarrier waveform and wired signal utilizing orthogonal frequency division multiplexing (OFDM), is described. At the optical line terminal, MIMO signals are integrated as upper and lower sidebands of the wired OFDM signal. This integration approach, employing single-sideband frequency translation, reduces the complexity of the transceiver design and provides high spectral efficiency because the two MIMO-RoF and wired signals transmit at the same frequency. Improved techniques are also employed to upconvert and downconvert the 60 GHz millimeter wave (MMW), being remote optical heterodyning and self-heterodyning, respectively. The MIMO-RoF signals are therefore transmitted at low frequency over the standard single-mode fiber to avoid the impairments induced at higher frequencies, and the remote optical local oscillator is reused to downconvert the two 60 GHz MMWs, producing a cost-effective system. Simulation results demonstrate very satisfactory network performance when using a downstream link over a 20 km span standard PON.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.