Abstract

A low-cost laser detection system based on coherence detection has been developed and is able to detect weak, continuous laser sources even against bright background light. The system is composed of a Mach–Zehnder interferometer with one arm modified with a piezo-mounted mirror to modulate the path length. We introduce methods to determine the laser wavelength and to extend the horizontal field of view of the detector. To widen the field of view, a cone mirror is added to the system while the additional use of a camera allows the direction of the incoming laser beam to be studied. The wavelength from three different lasers is estimated with the use of the modulation amplitude of the piezo mirror. The preliminary results demonstrate that a 360-deg horizontal field of view can be achieved and that the direction of the laser beam can be determined with an estimated angular precision of ±5 deg. Moreover, the wavelength can be determined with a precision of ±10 nm. The system trades sensitivity for a larger field of view with the resultant detection sensitivity equal to 70 nW (or 1 μW · cm − 2) at 635 nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.