Abstract

This paper presents a simple, low-cost, hours-long fabrication method for microwave waveguide components of high RF performance. The technique combines 3-D-printed configurations with liquid metal waveguide structures. As a demonstration, a fused deposition modeling multimaterial 3-D consumer-grade printer and liquid gallium were used. A conductive polylactic acid (PLA) waveguide flange was 3-D printed along, in-one-go, with standard PLA for the rectangular waveguide liquid metal enclosures. Microwave WR62 waveguides, resonators, and filters operating in Ku-band were designed, fabricated, and tested. The RF performance of the fabricated waveguide devices is in agreement with the simulations demonstrating better than 1.29 dB/m attenuation in the waveguide and better than 1000 $Q$ -factor for the resonator and the filter at 13 GHz. The fabricated devices demonstrate a new option of an economical fabrication technology for high RF performance microwave waveguide-based devices that can be delivered in hours-time, anywhere, anytime with minimal equipment deployment and investment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.