Abstract

In this paper, passivity-based control (PBC) of a Luo converter-fed DC motor is implemented and presented. In PBC, both exact tracking error dynamics passive output feedback control (ETEDPOF) and energy shaping and damping injection methods do not require a speed sensor. As ETEDPOF does not depend upon state computation, it is preferred in the proposed work for the speed control of a DC motor under no-load and loaded conditions. Under loaded conditions, the online algebraic approach in sensorless mode (SAA) is used for estimating different load torques applied on the DC motor such as: constant, frictional, fan-type, propeller-type and unknown load torques. Performance of SAA is tested with the reduced order observer in sensorless mode (SROO) approach and analyzed, and the results are presented to validate the low-cost implementation of PBC for a DC drive without a speed and torque sensor.

Highlights

  • Electrical motors are the workforce in industrial applications

  • The feedback regulation of a DC motor is achieved through the pulse width modulation (PWM)

  • The setup includes a Luo converter, a DC motor coupled with a DCi2motor which will act as a generator, a controller and appropriate sensors with signal conditioning circuits

Read more

Summary

Introduction

Electrical motors are the workforce in industrial applications. They are generally needed to work under variable speeds and for unknown load torque scenarios. Though an induction motor is robust, cost-effective and cheaper in maintenance, a DC motor is preferred due to its good dynamic response in comparison to an AC motor, simple controlling methods and wide speed control. Due to these reasons, the DC motor is extensively used in rolling mills, paper machines and unwinding and rewinding machines. The feedback regulation of a DC motor is achieved through the pulse width modulation (PWM)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.