Abstract
Development and fabrication of bioanalytical devices by 3D printing offers revolutionary new routes to low cost clinical diagnostic devices for molecular measurements. Relevant to future protein-based cancer diagnostics, we describe here our development of prototype protein immunoarray devices using desktop Fused Deposition Modeling (FDM) and stereolithographic 3D printers. All these system feature sensitive electro-optical detection by a method called electrochemiluminescence (ECL). Our first 3D-printed immunoarray features screen-printed sensors in which manual manipulations enable gravity flow reagent delivery for measurement of 3 proteins at detection limits of 0.3 to 0.5 pg/mL. ECL detection is achieved in an open channel on integrated disposable screen-printed sensor elements. We then address the issue of printing and processing optically clear plastic using a stereolithographic printer to build a closed ECL detection chamber. Finally, we describe a prototype 3D-printed microprocessor-controlled enclosed microfluidic ECL immunoarray featuring reagent reservoirs, micropumps and clear plastic detection chamber with printed nanowells for ECL emission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.