Abstract

This paper studies low-complexity high-speed decoder architectures for quasi-cyclic low density parity check (QC-LDPC) codes. Algorithmic transformation and architectural level optimization are incorporated to reduce the critical path. Enhanced partially parallel decoding architectures are proposed to linearly increase the throughput of conventional partially parallel decoders through introducing a small percentage of extra hardware. Based on the proposed architectures, a (8176, 7154) Euclidian geometry-based QC-LDPC code decoder is implemented on Xilinx field programmable gate array (FPGA) Virtex-II 6000, where an efficient nonuniform quantization scheme is employed to reduce the size of memories storing soft messages. FPGA implementation results show that the proposed decoder can achieve a maximum (source data) decoding throughput of 172 Mb/s at 15 iterations

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.