Abstract

In this work, we study the problem of minimizing the total power consumption in a multihop wireless network subject to a given offered load. It is well-known that the total power consumption of multihop wireless networks can be substantially reduced by jointly optimizing power control, link scheduling, and routing. However, the known optimal cross-layer solution to this problem is centralized and with high computational complexity. In this paper, we develop a low-complexity and distributed algorithm that is provably power-efficient. In particular, under the node-exclusive interference model and with suitable assumptions on the power-rate function, we can show that the total power consumption of our algorithm is at most (2+¿) times as large as the power consumption of the optimal (but centralized and complex) algorithm, where ¿ is an arbitrarily small positive constant. Our algorithm is not only the first such distributed solution with provable performance bound, but its power-efficiency ratio is also tighter than that of another suboptimal centralized algorithm in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.