Abstract

The precise acquisition of three-dimensional geometrical data in micro- and nanotechnologies plays a crucial role in advanced fabrication processes. Scanning white-light interferometry achieves nanometer resolution in the axial direction, but the lateral resolution is far more critical. The requirements for an area-based optical sensor in a nano-measuring machine are very high. The resolution in every dimension and the working distance have to be as high as possible. In contrast to a Mirau interferometer, a Linnik interferometer does not need any optical components in front of the objective lens. This benefit permits both a long working distance and a high lateral resolution. In the EC-funded project ‘NanoCMM’ we developed a Linnik interferometer providing a working distance of more than 5 mm and a lateral resolution of 0.44 µm. This is achieved by near-UV illumination. The interferometer measures the full modulation depth and the rectangular shape of a pitch standard with 0.6 µm pitch length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.