Abstract

Two-dimensional (2D) materials as contacts for semiconductor devices have attracted much attention due to minimizing Fermi level pinning. Schottky–Mott physics has been widely employed to design 2D material-based electrodes and to elucidate their contact behavior. In this study, we revealed that charge transfer across a 2D/semiconductor heterointerface and materials characteristics besides work function should be accounted for in fabrication of electrodes based on 2D materials. Our density functional theory (DFT) calculations predicted that charge transfer between ZnO and NbSe2 lowers the barrier height at the heterojunction and that conductive surface states of ZnO provide an additional conduction channel in the ZnO/NbSe2 heterostructures. Crystalline ZnO/NbSe2 heterostructures were prepared by the hydrothermal method. Electrical characterizations of the ZnO/NbSe2 heterostructures showed Ohmic-like behavior as predicted by the DFT calculations, opposed to the prediction based on the Schottky–Mott model.

Highlights

  • The electrical properties of 2D/conventional semiconductors have been studied in a few cases, such as graphene/Ge, graphene/GaN, MoS2/Ge, and MoS2/Si.17–21 In the reported cases, charge transfer between a 2D material and a conventional semiconductor is commonly observed

  • We revealed that charge transfer across a 2D/semiconductor heterointerface and materials characteristics besides work function should be accounted for in fabrication of electrodes based on 2D materials

  • Our density functional theory (DFT) calculations predicted that charge transfer between ZnO and NbSe2 lowers the barrier height at the heterojunction and that conductive surface states of ZnO provide an additional conduction channel in the ZnO/NbSe2 heterostructures

Read more

Summary

Introduction

The electrical properties of 2D/conventional semiconductors have been studied in a few cases, such as graphene/Ge, graphene/GaN, MoS2/Ge, and MoS2/Si.17–21 In the reported cases, charge transfer between a 2D material and a conventional semiconductor is commonly observed. Our density functional theory (DFT) calculations predicted that charge transfer between ZnO and NbSe2 lowers the barrier height at the heterojunction and that conductive surface states of ZnO provide an additional conduction channel in the ZnO/NbSe2 heterostructures.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.