Abstract

Recently there has been a lot of interest in Cross Language Sentiment Analysis (CLSA) using Machine Translation (MT) to facilitate Sentiment Analysis in resource deprived languages. The idea is to use the annotated resources of one language (say, L 1) for performing Sentiment Analysis in another language (say, L 2) which does not have annotated resources. The success of such a scheme crucially depends on the availability of a MT system between L 1 and L 2. We argue that such a strategy ignores the fact that a Machine Translation system is much more demanding in terms of resources than a Sentiment Analysis engine. Moreover, these approaches fail to take into account the divergence in the expression of sentiments across languages. We provide strong experimental evidence to prove that even the best of such systems do not outperform a system trained using only a few polarity annotated documents in the target language. Having a very large number of documents in L 1 also does not help because most Machine Learning approaches converge (or reach a plateau) after a certain training size (as demonstrated by our results). Based on our study, we take the stand that languages which have a genuine need for a Sentiment Analysis engine should focus on collecting a few polarity annotated documents in their language instead of relying on CLSA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.