Abstract

Although several loci for familial dilated cardiomyopathy (DCM) have been mapped, the origin of a large percentage of DCM remains unclear. Mdm2, a p53-negative regulator, protects cardiomyocytes from ischemic and reperfusion-induced cell death. Mdm4, a homolog of Mdm2, inhibits p53 activity in numerous cell types. It is unknown whether Mdm4 plays a role in the inhibition of p53 in fully differentiated tissues such as adult cardiomyocytes and whether this role is associated with DCM. The conditional knockout of Mdm4 in the heart by use of cardiomyocyte-specific Cre (alphaMyHC-Cre) allele does not result in any developmental defects. With time, however, mice with deletion of Mdm4 in the adult heart developed DCM and had a median survival of 234 days. More interestingly, the onset of DCM occurs significantly earlier in male mice than in female mice, which mimics human DCM disease. DCM in Mdm4 mutant mice was caused by loss of cardiomyocytes by apoptosis, and it was p53-dose dependent. Activity of p53 was inhibited by Mdm4 even in the fully differentiated cardiomyocyte. Elevated apoptosis mediated by the p53 pathway in cardiomyocytes may be a mechanism for DCM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.