Abstract
We present a new fully automatic block-decomposition algorithm for feature-preserving, strongly hex-dominant meshing, that yields results with a drastically larger percentage of hex elements than prior art. Our method is guided by a surface field that conforms to both surface curvature and feature lines, and exploits an ordered set of cutting loops that evenly cover the input surface, defining an arrangement of loops suitable for hex-element generation. We decompose the solid into coarse blocks by iteratively cutting it with surfaces bounded by these loops. The vast majority of the obtained blocks can be turned into hexahedral cells via simple midpoint subdivision. Our method produces pure hexahedral meshes in approximately 80% of the cases, and hex-dominant meshes with less than 2% non-hexahedral cells in the remaining cases. We demonstrate the robustness of our method on 70+ models, including CAD objects with features of various complexity, organic and synthetic shapes, and provide extensive comparisons to prior art, demonstrating its superiority.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.