Abstract

This work integrates two distinct research areas of parallel and distributed computing, (1) automatic loop parallelization, and (2) component-based Grid programming. The latter includes technologies developed within CoreGRID for simplifying Grid programming: the Grid ComponentModel (GCM) and Higher- Order Components (HOCs). Components support developing applications on the Grid without taking all the technical details of the particular platform type into account (network communication, heterogeneity, etc.). The GCMenables a hierarchical composition of programpieces and HOCs enable the reuse of component code in the development of new applications by specifying application-specific operations in a program via code parameters. When a programmer is provided, e. g., with a compute farm HOC, only the independent worker tasks must be described. But, once an application exhibits data or control dependences, the trivial farm is no longer sufficient. Here, the power of loop parallelization tools, like LooPo, comes into play: by embedding LooPo into a HOC, we show that these two technologies in combination facilitate the automatic transformation of a sequential loop nest with complex dependences (supplied by the user as a HOC parameter) into an ordered task graph, which can be processed on the Grid in parallel. This technique can significantly simplify GCM-based systems which combine multiple HOCs and other components. We use an equation system solver based on the successive overrelaxation method (SOR) as our motivating application example and for performance experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.